
Pierre Lebrun
Astrid Jullion

An introduction to STAN
and SAS PROC MCMC

Outline

n  Bayesian basics

n  Presentation of common samplers in SAS proc MCMC

n  Presentation of the No-U-Turn Sampler in Stan

n  Overview of some diagnostic tools to check sampled chains

n  Proc MCMC

n  Stan / rstan
-  Installation guide

-  Use

n  Examples in proc MCMC and Stan
-  Poisson random model for the EPIL data with highly correlated

parameters

-  Right-censored survival model for KIDNEY data

Bayes Theorem

n  Posterior distribution of the parameters

n  Prediction of a new observation

30 2. Bayesian methodologies

(Guttman, 1988).

The first sections of this chapter describes the basis of Bayesian analysis in very
general terms. Chapters 3 and 4 illustrate some applications of Bayesian methodolo-
gies to get a predictive distribution for the examples that are used in this manuscript:
the standard multivariate regression, the one-way random ANOVA, the hierarchi-
cal linear regression and the mixed-e�ect non-linear regression with model for the
variance.

2.1 Bayes’ theorem

In the Bayesian framework, the quantities of interest are assumed to be random
values that follow a probability distribution. If y = (y1, ..., yn) is the vector of
n observations of the random value Y , that depends upon some parameters � =
(�1, ..., �p), then it has a probability density function p(y | �, I). I represents any
pertinent information included, translated into assumptions about the distribution.
For simplicity, I might be ignored in the notations to shorten equations.

The uncertainty about the unknown parameters � is also expressed using a dis-
tribution p(� | I). Applying the rule of products:

p(y | �) . p(�) = p(y, �) = p(� | y) . p(y). (2.1)

Isolating the distribution of � conditional to the data y, the following result is
obtained:

p(� | y) = p(y | �) p(�)
p(y)

= p(y | �) p(�)
�

� p(y | �) p(�) d�

Posterior = Likelihood � Prior
Marginal likelihood . (2.2)

This is the well-known Bayes’ theorem. p(� | y) is called the posterior density of �,
expressing how � is distributed given the data. It is often written p(� | data). p(�)
is referred as its prior density. It expresses what is known about � before any look
on the data.

p(y | �) is the likelihood function and is also written L(� | y). p(y) is the
marginal likelihood and is a normalizing constant depending only on the data. Its
main utility is to ensure the posterior density integrates to 1. p(y) being a constant,

2. Bayesian methodologies 31

Equation (2.2) is often simplified into

p(� | y) ⇥ L(� | y) . p(�)
Posterior ⇥ Likelihood � Prior, (2.3)

where ⇥ stands for “equals up to a constant”. The posterior density of � is the prior
knowledge of � that is updated through the likelihood function.

The prior distribution of � can be the expression of ignorance about �. In this
case, a non-informative prior distribution, or vague prior distribution, is used. This
distribution is generally very flat over the domain of � (notice that giving a vague a
priori is considered as a pertinent information I about �). On the opposite, if pre-
vious experiments give clues about �, or if general knowledge about the application
domain provides useful information (i.e. location, spread), it can be incorporated in
the definition of p(�) as an informative a priori.

The use of a prior distribution for the parameters is what makes the di�erence
with the frequentist approach, and is sometimes viewed as a strong argument against
the Bayesian approach, because it is mandatory to set these prior values. This
argument can however be reverted as it would be harmful not incorporating any
useful and valid information about �. In addition, when non-informative a priori are
used, this leads to results similar to frequentist statistics: the posterior distribution
has the same form than the likelihood.

The di�culty to set up priors increases with the dimensionality of parameters
(Gelman et al., 2008; Kerman, 2011). This is a common problem for the Bayesian
analysis that can be addressed through some sensitivity studies of the e�ect that
the prior information has on the posterior distribution.

2.2 Posterior distribution of the parameters

In Bayesian statistics, the Equations (2.2) and (2.3) must be solved. This can be
done analytically or using numerical methods. The most desirable situation arises
when it is possible to find the analytical form of p(� | y), and to identify its under-
lying distribution. This option is realistic when working on simple problems (small
dimension, linearity, classical distribution assumptions, simple priors etc.) but of-
ten, the full joint posterior distribution of the parameters remains unidentified. In
that case, numerical solutions based on sampling methodologies might be envisaged.
The reasons why the posterior distribution can remain unidentified are of various
natures.

p(ỹ | y) =
Z

✓
p(ỹ | ✓) p(✓ | y) d✓ (1)

Design Space = {x̃ 2 � | P(ỹ 2 ⇤ | x̃, data) � ⇡} (2)

p(ỹ 2 ⇤ | data) ' 1
n⇤

n⇤X

s=1

I(ỹ(s) 2 ⇤)

1

Likelihood given the parameters

Predictive density integrating out the parameter distribution

n  Let’s consider that θ is the parameter of interest (ex: treatment
effect)

θ is treated as random variables

1. Prior distribution of parameter θ : p(θ)

-  Distribution of θ before any data are observed

-  Reasonable opinion concerning the plausibility of different values of θ

-  Ideally based on all available evidence/knowledge (or belief)

-  Or deliberately select a non-informative prior

Bayesian principle

 Examples of prior distributions

Gamma distributions Beta distributions

•  Prior distribution -> Specify the domain of plausible values

 -> Specify the weights given to these values

•  Prior distributions do not have to be a Normal (not only prior mean
 and prior variance)

•  Prior distributions ≠ initial values.

Bayesian principle

Bayesian principle

2. Likelihood:
-  Conditional probability of the data given θ: p(y| θ)

-  Based solely on data

3. Posterior distribution:
-  Distribution of θ after observed data have been taken into account:

p(θ|y)

-  Final opinion about θ

4. Predictive distribution:
-  Given the model and the posterior distribution of its parameters, what

are the plausible values for a future observation y*?
p(y*| θ)

Sampling

n  When it is not possible to identify a known distribution for the
posterior of parameters
-  Rely on sampling from the complete joint posterior

n  But, a MCMC sampler is cumbersome and time consuming to
program and tune
-  So, use an existing ‘multi-purpose sampler’ already existing

BUGS based (Win/OpenBUGS, JAGS)

SAS based (proc MCMC)

R/C++ based (Stan, JAGS)

-  Or use very good approximations of the posterior

INLA

Predictions

n  For a majority of hierarchical (unbalanced) linear or nonlinear
models, the predictive distribution is non tractable
-  Often, the posterior of the parameters is not identified

n  In this case, the integral in the prediction formula could be
resolved using Monte-Carlo simulations if samples of the
parameter posterior distribution are available

34 2. Bayesian methodologies

where p(ỹ | �) is given by the model for given values of the parameters and p(� | y)
is the posterior density of these parameters given the data.

Di⇣erent options are available to solve Equation (2.7). The ideal case is to carry
out the integral and identify a known distribution for the prediction of ỹ. When
this is possible, inference about the future behavior of ỹ is made simple.

However, this integral might not be analytically tractable. In this case, Monte-
Carlo simulations are a way to propagate the posterior uncertainty of the parameters
to the model responses. To obtain samples from the predictive distribution, Equa-
tion (2.7) suggests to do the following:

• draw �(s) from the joint posterior density p(� | y),

• draw ỹ(s) from the model p(ỹ | �(s)),

with s = 1, ..., n� is the number of samples to draw.

Apart from its direct implication in Design Space computations, the predictive
density can be used to check the model quality, as suggested firstly by Rubin (1981,
1984) and discussed by Gelman et al. (2004). Basically, a good model should obvi-
ously have a good fit that can be assessed through the use of classical displays of the
observed and mean predicted data in graphs (fit, residuals, etc.). Furthermore, the
predictive uncertainty should be as limited as possible. The data should naturally
be compliant with the predictive distribution (i.e. the model), and conversely.

2.3.1 Predictive interval and region

Similarly to the credible interval, the predictive interval is defined as the shortest
interval [⇥1, ⇥2] that contains �(100)% of the predictive density. It identifies the
values of ỹ that have the highest (predictive) density support. They can formally
be defined as

⇥1, ⇥2 such as
� �2

�1
p(ỹ | y)dỹ = �, with p(⇥1 | y) = p(⇥2 | y) (2.8)

The Bayesian predictive interval is not the equivalent of the classical prediction
interval, but is directly related to the �-expectation tolerance interval (Guttman,
1988). It is expected that a specified proportion (or coverage) � of ỹ will fall within
[⇥1, ⇥2].

This gives clue that, at least from a simulation point of view, the �-expectation
tolerance intervals are simple to obtain in the Bayesian framework, while they are
often complicated to derive in the frequentist framework, even for simple models.

Markov Chain Monte Carlo basics

Bayesian analysis using SAS

n  SAS allows some Bayesian analysis with:
-  GENMOD (generalized linear models)

-  PHREG (Cox proportional hazards models)

-  LIFEREG (accelerated failure time models)

-  MIXED (prior statement to sample from variance components
distribution)

n  Proc MCMC:
-  Nearly any models

-  Program your likelihood, your prior and tune your MCMC algorithm

-  Algorithms:

•  Metropolis-Hasting

•  Independent sampler

•  Conjugate updater using Gibbs whenever possible

Adaptative rejection
sampling

Basic Metropolis-Hasting algorithm

n  Basic algorithm

n  Can be easily used for drawing univariate parameters conditional
to the previous values (s-1) of the others

244 C. Markov-chains Monte-Carlo methods

than with a i.i.d. sampling. The advantage of MCMC methods is to allow the
sampling from nearly any distribution, even when it is non-identified and highly
dimensioned.

The following sections present three classical MCMC algorithm, in their chrono-
logical order of appearance: the Metropolis algorithm, the Metropolis-Hasting algo-
rithm and the Gibbs sampler.

C.2 Metropolis algorithm

The Metropolis algorithm, due to Metropolis et al. (1953), is the foundation
of MCMC, and still one of the most popular methodology, because it is simple
but practical. Whatever the dimensionality or complexity of the distribution, the
Metropolis algorithm is able to generate samples from it. Furthermore, the related
density may only be known up to constant. This simplifies the analytical task as
normalizing constants must not be computed.

Metropolis works with a transition function based on a symmetric proposal dis-
tribution

q(◊(s) | ◊(s≠1)) = q(◊(s≠1) | ◊(s)),
those draws are either accepted or rejected following a simple decision rule. Some
restrictions must be observed on the proposal : q and p must have the same support,
and there is a constant „ such as p(◊)/q(◊) Æ „, ’ ◊.

The process goes as follows: first, an initial value ◊(0) is chosen. From this value,
the Metropolis algorithm is used to generate the elements of the chain ◊(1), ◊(2), ◊(...),
by successively repeating the following steps :

For s = 1 to nú

1. From a symmetric proposal distribution q(◊(s) | ◊(s≠1)), draw a new
candidate vector ◊

t

,

2. compute the acceptance probability: P
a

= min
3

1, p(◊(s)|data)
p(◊(s≠1)|data)

4
,

3. keep ◊(s) with probability P
a

or assign the old value ◊(s) = ◊(s≠1) other-
wise.

End

246 C. Markov-chains Monte-Carlo methods

accordance with the problem, and are subject to fine tuning. P
a

(s) is the acceptance
rate after iteration s.

Finally, this type of procedure is extendable for multivariate sampling. In this
case, not only the variances may be adapted, but also the covariances between the
variables.

C.3 Metropolis-Hasting algorithm

In 1970, Hasting generalized the work of Metropolis et al. to use a proposal distri-
bution that is not symmetric. More flexibility is left to use any proposal distribution.
The only di�erence with the Metropolis algorithm is the acceptance probability that
is computed as

P
a

= min
A

1,
p(◊(s) | data) . q(◊(s≠1) | ◊(s))

p(◊(s≠1) | data) . q(◊(s) | ◊(s≠1))

B

The adaptative variance parameters of Haario et al. (2001) can be used as well.

C.4 Gibbs sampler

When the conditional distributions of some subsets ◊ = (◊1, ◊2, ..., ◊
m

) are ex-
actly known, one can use these distributions as the proposal distribution (Geman
and Geman, 1984; Gelfand and Smith, 1990; Casella and George, 1992). As a con-
sequence, every draws from the (conditional) proposal distributions are accepted
(P

a

= 1). The algorithm is then simplified as follows, for each iteration s:

For j = 1 to m

Draw a sample from ◊(s)
j

≥ p(◊
j

| ◊(s≠1)
1 , ◊(s≠1)

2 , ..., ◊(s≠1)
j≠1 , ◊(s≠1)

j+1 , ..., ◊(s≠1)
m

, data),

End

C.5 Concluding remarks

Some basic MCMC methods have been presented in this Appendix. They allow
drawing samples from a (posterior) distribution of interest. When no direct sam-

proposal

Example of hand-made MCMC simulations

#Posterior distribution
logposterior=function(theta) -abs(theta)^3

#Number of generated values in the chain
M=1000

#Starting value for theta:
theta=c()
theta[1]=4
#Count the number of acceptations
n.accept=0

Metropolis sampling

for (i in 2:M){

 #Draw a value from the proposal symmetric distribution
 theta.prop=rnorm(1,theta[i-1],1.6)
 #Compute the probability
 prob=min(1,exp(logposterior(theta.prop)-logposterior(theta[i-1])))
 accept=(runif(1)<=prob)
 if (accept) {
 n.accept=n.accept+1
 theta[i]=theta.prop
 }
 else theta[i]=theta[i-1]}
 #Compute the acceptance rate
 round(n.accept/(M-1),2)

MCMC simulations

0 200 400 600 800 1000

-1
0

1
2

3
4

th
et
a Acceptance

rate=0.43

Burn-in

n  If the problem is not ill-conditionned, the Markov chain should
eventually converge to the desired distribution

n  However, the first sample position that is provided to the sampler
(= initial value) might be far from this distribution
-  the starting position has a very low density

n  A burn-in period is then generally envisaged
-  It consists in running the sampler for, say, 5000 iterations, to make it

converge, and then continue the sampling

-  Throwing away the first 5000 samples, the remaining samples should
represent a sample from the posterior

See diagnostics

Gibbs sampling

n  If the full conditional posterior distribution of subsets of
parameters can be identified, use Gibbs Sampling
-  Use this conditional distribution as proposal and accept every draws

-  Most algorithms, including proc MCMC or BUGS based samplers, have
rules and algorithms to derive the full conditional posteriors to use Gibbs
sampling

-  They choose automatically if e.g. Gibbs or Metropolis-Hasting have to be
used

246 C. Markov-chains Monte-Carlo methods

accordance with the problem, and are subject to fine tuning. P
a

(s) is the acceptance
rate after iteration s.

Finally, this type of procedure is extendable for multivariate sampling. In this
case, not only the variances may be adapted, but also the covariances between the
variables.

C.3 Metropolis-Hasting algorithm

In 1970, Hasting generalized the work of Metropolis et al. to use a proposal distri-
bution that is not symmetric. More flexibility is left to use any proposal distribution.
The only di�erence with the Metropolis algorithm is the acceptance probability that
is computed as

P
a

= min
A

1,
p(◊(s) | data) . q(◊(s≠1) | ◊(s))

p(◊(s≠1) | data) . q(◊(s) | ◊(s≠1))

B

The adaptative variance parameters of Haario et al. (2001) can be used as well.

C.4 Gibbs sampler

When the conditional distributions of some subsets ◊ = (◊1, ◊2, ..., ◊
m

) are ex-
actly known, one can use these distributions as the proposal distribution (Geman
and Geman, 1984; Gelfand and Smith, 1990; Casella and George, 1992). As a con-
sequence, every draws from the (conditional) proposal distributions are accepted
(P

a

= 1). The algorithm is then simplified as follows, for each iteration s:

For j = 1 to m

Draw a sample from ◊(s)
j

≥ p(◊
j

| ◊(s≠1)
1 , ◊(s≠1)

2 , ..., ◊(s≠1)
j≠1 , ◊(s≠1)

j+1 , ..., ◊(s≠1)
m

, data),

End

C.5 Concluding remarks

Some basic MCMC methods have been presented in this Appendix. They allow
drawing samples from a (posterior) distribution of interest. When no direct sam-

Gibbs sampling vizualized
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003

MCMC with correlations

n  Sampling a multivariate distribution from a univariate proposal

n  Very slow exploration of the parameter space
-  especially if correlation is present

n  As sample j is very close to sample j-1 à autocorrelation

n  Convergence can be very slow as well

proposal

How to improve exploration ?

n  Take a multivariate distribution as proposal
-  If correlations can be roughly estimated, the sampling can be improved

to account for the dependency structure

Still, it does not work well with exotic distribution (e.g. banana shaped, etc.)

-  Sampling by block easier if interesting blocking of similar parameters can
be identified

E.g. in a regression, sample the regressors and the variance in two blocks

n  Thin the samples
-  Keeping only one sample out of, say, 10, to obtain a ‘faster’ exploration

of the distribution

n  Transform the model to obtain uncorrelated parameters
E.g. in BUGS: mu[i] <- alpha + beta * (x[i] - x.mean)

n  Overrelaxation method

Hamiltonian Monte-Carlo

n  The idea is to avoid the random walk behavior of MCMC
algorithms
-  Uses Hamiltonian dynamics

-  Auxiliary momentum vector

So, a state (one sample) has a position and a momentum (mass*velocity)

 A potential energy (∝ to the posterior density height)
 A kinetic energy (momentum & mass)

à The target density defines a potential energy function using Hamiltonian
equations

à One sampling iteration consists in moving on the posterior following
these dynamics

- instead of moving using a simpler proposal distribution

n  Theory terminology is often hard for statisticians without a good
knowledge of physics

Hamiltonian Monte-Carlo

n  Two types of proposals are used iteratively
1. randomize the momentum variable (give a velocity)

2. move on the posterior using Hamiltonian equations

•  Leapfrog function

n  Discar the momentum variables and keep only the sequence of
position (i.e. samples)

Hoffman and Gelman

−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

0.4

Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions ✓
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

being more complicated, the analogous algorithm that eliminates the slice variable seems
empirically to be slightly less e�cient than the algorithm presented in this paper.

6

Hoffman, Matthew D. and Andrew Gelman. In press. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research.

Hamiltonian Monte-Carlo

n  Why it is performant ?
-  Rely on the gradient of the current location of the posterior to better

know the direction to take towards the next sample

-  Leapfrog functions are used to discretize the Hamiltonian equations

Computers can work with them very efficiently

Explore the posterior distribution more efficiently using several leapfrogs to
reduce autocorrelation

−2 −1 0 1 2

−2
−1

0
1

2

Random−walk Metropolis

−2 −1 0 1 2

−2
−1

0
1

2

Hamiltonian Monte Carlo

0 50 100 150 200

−3
−2

−1
0

1
2

3
fir

st
 p

os
iti

on
 c

oo
rd

in
at

e

Random−walk Metropolis

0 50 100 150 200

−3
−2

−1
0

1
2

3
fir

st
 p

os
iti

on
 c

oo
rd

in
at

e

Hamiltonian Monte Carlo

Neal, R. MCMC using Hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo, Brooks et al, Chapman & Hall, 2010

NUTS

n  Using the leapfrog function, two parameters have to be tuned
-  The size of the leap (the step)

-  The number of leaps

n  Tuning them is a complex task that may require many additional
runs

n  The No-U-Turn Sampler (NUTS) is an improvement of HMC that
have routines to tune these parameters on-the-fly Hoffman and Gelman

−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

0.4

Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions ✓
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

being more complicated, the analogous algorithm that eliminates the slice variable seems
empirically to be slightly less e�cient than the algorithm presented in this paper.

6

Choose randomly
among the valid
candidates the next
sample/position

NUTS vs. random Walk

n  How NUTS performs compared to the other samplers and
compared to an i.i.d. sampler assuming it is available

Hoffman, Matthew D. and Andrew Gelman. In press. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research.

Diagnostic tools

ESS and Geweke

n  Both available even when only one chain is available

n  Effective sample size

ESS corrects the number of samples obtained, by the autocorrelations present in the chains

n  Geweke diagnostic
-  The Geweke test compares values in the early part of the Markov chain to those in the latter

part of the chain in order to detect failure of convergence.

-  Similar to a two-sided t-test to compare 2 means, with standard errors that can be adjusted
for autocorrelations

MCSE

n  Monte Carlo Standard Errors

-  MCSE = Monte Carlo Standard Errors of the mean : accuracy of the posterior
estimates

-  SD = posterior standard deviations computed on the chain

-  Given an effective sample size of m, the MC standard error for the mean
is . , the procedures use the following formula to include ESS :

-  If the values in the “MCSE/SD” column are small, it means that only a fraction of
the posterior variability is due to the simulation.

•  Gelman argues that the best way to identify non-convergence
is to simulate multiple sequences for over-dispersed starting
points/initial values.

•  The intuition is that the behavior of all of the chains should be
basically the same, if convergence occurs.

•  As Gelman and Rubin put it, the variance within the chains
should be the same as the variance across the chains.

•  This can be diagnosed pretty easily through traceplots of
multiple chains. You want to see if it looks like that the mean
and the variance of all the chains are the same.

Gelman-Rubin-Brook

Diagnostic tool:
 Gelman-Rubin Diagnostic

Examples where convergence seems reasonable (top) and unreasonable (bottom)

alpha0 chains 1:2

iteration

101 200 400 600

 -1.5

 -1.0

 -0.5

 0.0

 0.5

alpha0 chains 1:2

iteration

101 200 400 600

 -2.5
 0.0
 2.5
 5.0
 7.5

 10.0

Gelman-Rubin-Brook

Gelman-Rubin-Brook

n  Gelman-Rubin-Brook diagnostic (~F-test ANOVA)
-  If convergence, the dispersion within the chains should be equal to the

dispersion observed between the chains

-  Need several chains !

-  Pooled within chain variance

-  Between chain variance

-  Total variance

Within Chain Variance

W =
1

m

mX

j=1

s

2

j

where

s

2

j

=
1

n � 1

nX

i=1

(✓
ij

� ✓̄
j

)2

s

2

j

is just the formula for the variance of the jth chain. W is then
just the mean of the variances of each chain.

W likely underestimates the true variance of the stationary
distribution since our chains have probably not reached all the
points of the stationary distribution.

Within Chain Variance

W =
1

m

mX

j=1

s

2

j

where

s

2

j

=
1

n � 1

nX

i=1

(✓
ij

� ✓̄
j

)2

s

2

j

is just the formula for the variance of the jth chain. W is then
just the mean of the variances of each chain.

W likely underestimates the true variance of the stationary
distribution since our chains have probably not reached all the
points of the stationary distribution.

Between Chain Variance

B =
n

m � 1

mX

j=1

(✓̄
j

� ¯̄✓)2

where

¯̄✓ =
1

m

mX

j=1

✓̄
j

This is the variance of the chain means multiplied by n because
each chain is based on n draws.

Between Chain Variance

B =
n

m � 1

mX

j=1

(✓̄
j

� ¯̄✓)2

where

¯̄✓ =
1

m

mX

j=1

✓̄
j

This is the variance of the chain means multiplied by n because
each chain is based on n draws.

Estimated Variance

We can then estimate the variance of the stationary distribution as
a weighted average of W and B.

V̂ar(✓) = (1� 1

n

)W +
1

n

B

Because of overdispersion of the starting values, this overestimates
the true variance, but is unbiased if the starting distribution equals
the stationary distribution (if starting values were not
overdispersed).

Gelman-Rubin-Brook

-  The R statistic

-  R should be very close to 1 in case of convergence

-  Local optima convergence (with poor initial values all in the same area)
may not be identified, even if R is close to 1

-  To do with all chains of parameters

-  Potential scale reduction factor (PSRF) : Compute R through the
iterations (including burn-in) : Gelman-Rubin-Brooks plot

Potential Scale Reduction Factor

The potential scale reduction factor is

R̂ =

s
V̂ar(✓)

W

When R̂ is high (perhaps greater than 1.1 or 1.2), then we should
run our chains out longer to improve convergence to the stationary
distribution.

We can see how the potential scale reduction factor changes
through the iterations using the gelman.plot() function.

> gelman.plot(mh.list)

0 2000 4000

1.0
0

1.0
5

1.1
0

1.1
5

1.2
0

1.2
5

1.3
0

1.3
5

last iteration in chain

sh
rin

k f
ac

tor

median
97.5%

0 2000 4000

1.0
0

1.0
5

1.1
0

1.1
5

1.2
0

1.2
5

1.3
0

1.3
5

last iteration in chain

sh
rin

k f
ac

tor
median
97.5%

Other classical tools

n  Trace plots

n  Densities

n  Autocorrelations

Other classical tools

n  SAS default output for one chain/parameter

Intervals

n 

Intervals

n  If the posterior distribution is approximately symmetric, the HPD and
quantile-based credible interval are very similar

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

x

 H PD

 Quantile-based

•  Bayesian credible interval :
95% most plausible/
credible values

•  Frequentist Confidence
interval: “If we repeat the
same experiment a large
number of times, the
confidence interval will
cover the true value in 95%
of the cases.”

Diagnostic tools

n  Estimates and intervals
 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat!

beta[1] -0.6 0 0.6 -1.9 -1.0 -0.6 -0.2 0.5 1793 1!

beta[2] -0.6 0 0.4 -1.3 -0.8 -0.5 -0.3 0.2 1748 1!

> HPDinterval(mc,0.95)

 lower upper!
beta[1] -1.762674 0.5780758!
beta[2] -1.284624 0.2594099!

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

 H PD

 Quantile-based

Convergence Diagnostic Summary

1)  You can never prove that something has converged, you can
only tell when something has not converged.

2)  If your model has not converged and you are confident that you
haven’t made a stupid mistake, then the best thing to do may be
to just let the model run a long time.

3)  For models with large numbers of parameters you should let the
model run for a long time.

4)  There are a number of “easy to implement” tricks (mostly
reparamerizations) that will help to speed convergence.

Convergence checks

Proc MCMC

SAS code (1)

ods graphics on;

 proc mcmc data=mcmc.c12 outpost=mcmc.predcmax nbi=1000 nmc=10000 thin=5 seed=2466810

 monitor=(_parms_ mu test45 test80 test85)

 STATS(ALPHA=(0.1 0.2))=ALL ;

 parms alpha 0 beta 0;

 parms sigma2 1;

 prior alpha beta ~ normal(mean = 0, var = 1e6);

 prior sigma2 ~ igamma(shape = 0.00000001, scale = 0.00000001);

 mu = alpha + beta*ln_dose_;

 model ln_cmax_ ~ normal(mu, var = sigma2);

 test45 = exp(alpha + beta*log(45)) ;

 test80 = exp(alpha + beta*log(80)) ;

 test85 = exp(alpha + beta*log(85)) ;

 run;

 ods graphics off;

SAS code (2)

ods graphics on;

 proc mcmc data=mcmc.c12 outpost=mcmc.predcmax nbi=1000 nmc=10000 seed=2466810

 monitor=(_parms_ mu test45 test80 test85) STATS(ALPHA=(0.1 0.2))=ALL ;

-  outpost : dataset with the chain of monitored parameters

-  nbi : number of burn-in values

-  nmc : number of sampled values

-  seed : for analysis repeatability

-  monitor : parameters to monitor

-  STATS : saved statistics and level of alpha for the posterior intervals

SAS code (3)

parms alpha 0 beta 0;

 parms sigma2 1;

 prior alpha beta ~ normal(mean = 0, var = 1e6);

 prior sigma2 ~ igamma(shape = 0.00000001, scale = 0.00000001);

-  parms : intial values

-  prior: prior distributions

SAS code (4)

 mu = alpha + beta*ln_dose_;

 model ln_cmax_ ~ normal(mu, var = sigma2);

 test45 = exp(alpha + beta*log(45)) ;

 test80 = exp(alpha + beta*log(80)) ;

 test85 = exp(alpha + beta*log(85)) ;

-  model : likelihood function

Proc MCMC in SAS 9.3

n  Truncated distribution :

-  prior alpha ~ normal(mean = 0, sd = 1, lower = 3, upper = 45);

n  Censored data:

-  Likelihood:

if uncensored then ll = logpdf('normal', x, mu, s);

else if leftcensored then ll = logcdf('normal', xl, mu, s);

else if rightcensored then ll = logsdf('normal', xr, mu, s);

else ll = log(cdf('normal', xr, mu, s) - cdf('normal', xl, mu, s));

model general(ll);

For right censored data, the likelihood
is the product of the likelihood under uncensored
data and the likelihood under censored data

Proc MCMC in SAS 9.3

n  PARM statement

-  Each statement forms a block of parameters, where the parameters are updated
simultaneously in each iteration.

-  If high posterior correlations, putting parameters in the same block improves the mixing
of the chain : the efficiency that the posterior parameter space is explored by the
Markov chain.

-  Possibilities :

•  sample all parameters simultaneously by putting them all in a single PARMS
statement

•  sample parameters individually by putting each parameter in its own PARMS
statement

•  sample certain subsets of parameters together by grouping each subset in its own
PARMS statements.

-  There are no theoretical results that can help determine an optimal “blocking” for an
arbitrary parametric model. A rule followed in practice is to form small groups of
correlated parameters that belong to the same context in the formulation of the model.

Proc MCMC in SAS 9.3

n  RANDOM statement

-  Used for hierarchical models

E.g. for univariate random effect:

random u ~ normal(mu,var=s2u) subject=index monitor=(u_1-u_3 u_23);

random u ~ normal(mu,var=s2u) subject=index monitor=(u);

E.g. for bivariate random effect:

array w[2];

array mu[2];

array cov[2,2];

random w ~ mvn(mu, cov) subject=zipcode;

Proc MCMC in SAS 9.3

n  PREDDIST statement

-  The PREDDIST statement creates a new SAS data set that contains
random samples from the posterior predictive distribution of the
response variable.

-  PREDDIST OUTPRED=SAS-data-set < NSIM=n >
<COVARIATES=SAS-data-set > < STATISTICS=options > ;

How to handle several chains ?

 %macro gmcmc;
 %do i=1 %to &nchain;
 data _null_;
 set init;
 if Chain=&i;
 %do j = 1 %to &nparm;
 call symputx("init&j", %scan(&var, &j));
 %end;
 stop;
 run;

 proc MCMC data=onedataset outpost=out&i init=reinit

 nbi=0 nmc=&nsim stats=none seed=7;
 parms beta0 &init1 beta1 &init2;
 parms sigma2 &init3;
 prior beta0 beta1 ~ normal(0, var = 1e6);
 prior sigma2 ~ igamma(3/10, scale = 10/3);
 mu = beta0 + beta1*height;
 model weight ~ normal(mu, var = sigma2);
 run;
 %end;
 %mend;
 %gmcmc;

 data init;
 input Chain beta0 beta1 sigma2;
 datalines;
 1 10 -5 1
 2 -15 10 20
 3 0 0 50
 ;

/* define constants */
 %let nchain = 3;
 %let nparm = 3;
 %let nsim = 50000;
 %let var = beta0 beta1 sigma2;

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_mcmc_sect066.htm

Multiple chains diagnostics with SAS

n  Additional to the basic diagnistics (1-chain, density,
autocorrelation

data all;
 set out1(in=in1) out2(in=in2) out3(in=in3);
 if in1 then Chain=1;
 if in2 then Chain=2;
 if in3 then Chain=3;
run;

%gelman(all, &nparm, &var, &nsim);

data GelmanRubin(label='Gelman-Rubin Diagnostics');
 merge _Gelman_Parms _Gelman_Ests;
run;

/* plot the trace plots of three Markov chains. */
%macro trace;
 %do i = 1 %to &nparm;
 proc sgplot data=all cycleattrs;
 series x=Iteration y=%scan(&var, &i) /

 group=Chain;
 run;
 %end;
%mend;
%trace;

Stan installation (Windows)

Stan installation

n  For a Windows installation
-  (probably easier on linux-based systems)

1)  Go to the website http://mc-stan.org/
- All the information in the next slides comes from there

2)  Follow the installation of the prerequisites

3)  The simpler is to call Stan from R

Stan: prerequisites

n  R is readily available on http://www.r-project.org

n  Rstudio (http://www.rstudio.com) is not mandatory, but is
recommended to help
-  edit files (R scripts, report Sweave files, possibly C/C++ files)

-  manage projects

-  manage packages

-  etc.

n  Both R and Rstudio are free and open source !

Stan: prerequisites

n  Stan needs a C++ compiler
-  Several options exists, the simplest is to rely on Rtools (

http://www.r-project.org)

n  What is Rtools ?
-  Rtools is developped to compile R packages and build R for Windows

-  Rtools contains a C/C++ compiler for Windows (gcc)

-  As all C/C++ compiler, gcc does not like ‘blank’ character in its path

- Avoid to install it in ‘Program Files’

- Install it on the root : ‘C:\Rtools’

- If not admin, install it on your personnal folder

n  At the end of the installation, Rtools asks for a Path update: if
possible, do it
-  The Path will make R (and any softwares) aware of the existence of gcc

Stan: prerequisites

n  On some computers, the last Rtools installation dialog may fail
-  Possible to edit the Path manually

Stan: prerequisites

- Click edit

-  Add ‘c:\Rtools\bin;c:\Rtools\gcc-4.6.3\bin;’
or the path were Rtools has been installed
in the beginning of the Path if not already
present

-  If there are other gcc compiler(s) named
gcc or g++, then you should take care
that the last pathes in the Path overwrite
the firsts

Stan: prerequisites

n  Rstan needs the Rcpp and inline packages
Ø  install.packages('inline')

Ø  install.packages(’Rcpp')

Ø  Try them with

Ø  If warnings, safely ignore if it still writes ‘hello world’ in the R
prompt

Stan installation

n  Last chance if it does not work
-  ask R to update its PATH for the local session only, to make it aware of

gcc

> Sys.setenv("PATH" = "c:\\Rtools\\bin;c:\\Rtools\\gcc-4.6.3\\bin;")

-  Warning: if other pathes were needed for other libraries, they are deleted
until R is restarded

n  Once gcc is working
-  you can develop C/C++ codes to improve computations for some of the

R bottlenecks (e.g. a for loop is efficient is C or C++)

-  Install rstan package from it repository (not in CRAN)

> options(repos = c(getOption("repos"), rstan = "http://
 wiki.stan.googlecode.com/git/R"))

> install.packages('rstan', type = 'source')

Stan installation

n  Warning about unavailability of rstan for R 3.X.X can be ignored

n  Other warnings during compilation of rstan can be ignore if the
package can be loaded
Ø  library(rstan)

Stan language basics

Stan language

n  Blocks
-  In C++, all variable types must be defined

-  Stan inherits from this properties

n  data { ... declarations ... }

n  transformed data { ... declarations ... statements ...}

n  parameters { ... declarations ... }

n  transformed parameters { ... declarations ...
statements ... }

n  model { ... declarations ... statements ... }

n  generated quantities { ... declarations ... statements ... }

Stan language

n  All blocks but ‘model’ are optional
-  Order matters

n  A variable that is declared in one block can be used in the
subsequent blocks, but not before

n  Block ‘parameters’ and ‘transformed parameters’
-  Define the type and the domain of each parameters

parameters {
real a0;
real b1[N];
real b[N, T];
real<lower=0> sigmasq_b;
real<lower=0,upper=50> sigmasq_a;
int nu;
}

transformed parameters {
#Executed at each leapfrog
real<lower=0> sigma_b;
sigma_b <- sqrt(sigmasq_b);
}

Stan language

n  Block ‘model’
-  Contains (possibly) priors

-  Contains likelihood definition in a BUGS-like style
model {
 real[N] mu_hat; #tmp variable declaration

 alpha ~ normal(0, 1000);
 beta ~ normal(0, 1000);
 sigma ~ uniform(0, 1000);

 for(i in 1:N){
 mu_hat[i] <- alpha + beta * year[i];
 y[i] ~ normal(mu_hat[i], sigma);
 }

Stan language

n  ‘Non informative’ = no prior distribution = uniform over the domain

n  The sampler does not need a prior to know the variables domain
-  Already given in the block ‘parameters’

n  This is one main advantage, e.g. to more easily define
multivariate hyper priors... just do nothing

model {
 real[N] mu_hat; #tmp variable declaration

 #alpha ~ normal(0, 1000);
 #beta ~ normal(0, 1000);
 #sigma ~ uniform(0, 1000);

 for(i in 1:N){
 mu_hat[i] <- alpha + beta * year[i];
 y[i] ~ normal(mu_hat[i], sigma);
 }

Stan language

n  Vectorization
-  (most) Stan distribution are vectorized

-  it means that Stan can sample vector from a seemingly univariate
distribution

parameters {
 real beta[2];
}

model {
 beta ~ normal(0, 1000);
 for(i in 1:N) {
 <model statement >
 }

Or,
for (n in 1:N) y[n] ~ bernoulli(theta);
is equivalent to the vectorized form,
y ~ bernoulli(theta);

Stan Language

n  Block ‘generated quantities’
-  Computed once per sample

If a (transformed) variable does not play a role in the model, it is more
efficient to compute the transformation in this block rather than in the
block ‘transformed parameters’

-  Does not affect the sampled values

-  Allows obtaining

posterior estimation of combination/transformation of parameters

predictions for new data

compute deviance or log likelihood for model comparison

...

Stan language

n  rstan package / interface
library(rstan)

#compile the model , Data is a list as in BUGS
fit <- stan(model_code = stan_code, data = Data, iter = 1000, chains = 1)
#more parameters allow using classical Hamiltonian sampler

#use the model
fit2 <- stan(fit = fit, data = Data, iter = 15000, chains =2,thin=10,warmup=5000,

 init=list(list(beta=c(1,1)),list(beta=c(-5,1))))

#print and plots
print(fit2,probs = c(0.25, 0.5, 0.75),digits_summary=2)
plot(fit2)
traceplot(fit2)

#export as a more classical mcmc object to be able to use classical coda/MCMCpack
tools
library(MCMCpack)
mc = as.mcmc(as.matrix(fit2))
acfplot(mc)
densityplot(mc)
HPDinterval(mc)

Examples

Epil data

Epil data

n  Poisson with random effects for both individual subjects and also
random effects for subject by visit to model extra-Poisson
variability within subjects

n  Seizure counts in a randomised trial of anti-convulsant therapy in
epilepsy
-  More on this model in the previous presentation !

SAS code

PROC MCMC data=poisson.data outpost=poisson.postout thin=1 nbi=2000 nmc=5000 seed=12541
 monitor=(a0 alpha_age alpha_BT alpha_base alpha_trt alpha_V4 alpha0 var_b varbinterac);

 ods output PostSummaries=PostSummaries;
 ods output PostIntervals=PostIntervals;

 /*** initial values ***/
 parms a0=1 alpha_base=0 alpha_trt=0 alpha_BT=0 alpha_age=0 alpha_V4=0; /*one block*/
 parms var_b=1;
 parms varbinterac=1;

 random b ~ normal(0,var=var_b) subject=ind;
 random binterac~normal(0,var=varbinterac) subject=rand;

 /*** priors ***/
 prior a0 ~ normal(0, var = 10000);
 prior alpha_base ~ normal(0, var = 10000);
 prior alpha_trt ~ normal(0, var = 10000);
 prior alpha_BT ~ normal(0, var = 10000);
 prior alpha_age ~ normal(0, var = 10000);
 prior alpha_V4 ~ normal(0, var = 10000);
 prior var_b~igamma(0.01,scale=0.01);
 prior varbinterac~igamma(0.01,scale=0.01);

 /*** model ***/
 logmu= a0+alpha_base*(logbase4-logbasebar)

 +alpha_trt*(trt-trtbar)
 +alpha_BT*(BT-BTbar)
 +alpha_age*(logage-logagebar)
 +alpha_v4*(V4-v4bar)
 +b+binterac;

 mu=exp(logmu);
 model y ~ poisson(mu);
/*** compute the intercept in the original scale ***/
 alpha0 = a0 - alpha_Base * logbasebar - alpha_Trt * Trtbar - alpha_BT * BTbar - alpha_Age *
 logAgebar - alpha_V4 * V4bar;

run;

•  To try to improve convergency and mixing, centering is applied

•  For this example, proc MCMC runs in about 15 sec.

Stan code

library(rstan)
stan_code <- ’
data {
int<lower=0> N;
int<lower=0> T;
int<lower=0> y[N, T];
int<lower=0> Trt[N];
int<lower=0> V4[T];
real log_Base4[N];
real log_Age[N];
real BT[N];
}
parameters {
real a0;
real alpha_Base;
real alpha_Trt;
real alpha_BT;
real alpha_Age;
real alpha_V4;
real b1[N];
real b[N, T];
real<lower=0> sigmasq_b;
real<lower=0> sigmasq_b1;
}

transformed parameters {
real<lower=0> sigma_b;
real<lower=0> sigma_b1;
sigma_b <- sqrt(sigmasq_b);
sigma_b1 <- sqrt(sigmasq_b1);
}
model {
#non useful (non info) priors:
a0 ~ normal(0, 10000);
alpha_Base ~ normal(0, 10000);
alpha_Trt ~ normal(0, 10000);
alpha_BT ~ normal(0, 10000);
alpha_Age ~ normal(0, 10000);
alpha_V4 ~ normal(0, 10000);
sigmasq_b1 ~ inv_gamma(.001, .001);
sigmasq_b ~ inv_gamma(.001, .001);
#log likelihood definition
for(n in 1:N) {
 b1[n] ~ normal(0, sigma_b1);
 for(t in 1:T) {
 b[n, t] ~ normal(0, sigma_b);
 y[n, t] ~ poisson(exp(a0 + alpha_Base * (log_Base4[n])

 + alpha_Trt * (Trt[n]) + alpha_BT * (BT[n])
 + alpha_Age * (log_Age[n])
 + alpha_V4 * (V4[t]) + b1[n] + b[n, t]));

 }
 }
} '

source("Bayes 2013_Poisson Data.R")

#compile
fit <- stan(model_code = stan_code, data = Data,
 iter = 1, chains = 1)

#run
fit2 <- stan(fit = fit, data = Data, iter = 3500, chains
 = 2,thin=1,warmup=1000)

plot(fit2)
traceplot(fit2,pars=c("alpha_Age","alpha_BT",
"alpha_Base","alpha_Trt","alpha_V4","a0",
"sigmasq_b","sigmasq_b1"))

library(MCMCpack) #Stan’s traceplot overwritten...
mc = as.mcmc(as.matrix(fit2))
acfplot(mc)
densityplot(mc)
HPDinterval(mc)

SAS (with centering) vs. Stan (without
centering)

n  To be fair, thinning is not applied with both sampler

0 500 1000 1500 2000 2500 3000 3500

-6
-4

-2
0

2

Trace of a0

Iterations

SAS (with centering and thining 1/10)
vs. Stan (without centering and no thining)
 mean se_mean sd 25% 50% 75% n_eff Rhat!
alpha_Age 0.48 0.01 0.36 0.24 0.48 0.71 2423 1!
alpha_BT 0.35 0.00 0.21 0.20 0.35 0.49 2220 1!
alpha_Base 0.89 0.00 0.14 0.80 0.89 0.97 2209 1!
alpha_Trt -0.95 0.01 0.42 -1.23 -0.95 -0.67 2466 1!
alpha_V4 -0.10 0.00 0.09 -0.16 -0.10 -0.04 5000 1!
a0 -1.39 0.02 1.24 -2.20 -1.40 -0.58 2473 1!
sigmasq_b 0.13 0.00 0.03 0.11 0.13 0.15 696 1!
sigmasq_b1 0.25 0.00 0.07 0.20 0.24 0.30 2619 1!

HPD intervals

Stan: alpha0 -3.615 1.225

SAS: alpha0 -4.481 1.169

Stan: equivalence with / without centering

n  Similar results, but...

n  With centering: 10 sec. Without centering: 6 min.
-  ‘Instant’ convergence Slower convergence

Survival data

Survival data

n  From the Kidney example of R-INLA (http://www.r-inla.org/examples/volume-ii)
-  Times to infection of kidney dialysis patients

-  Data:

Time to infection in Month/10, ti

Presence/Absence of infection

2 types of catheter to be compared, trti

-  Right-censored data

If infection, ‘time’ is the time of failure

-  Model without censored data:

Exponential and Weibull Models

We consider the data of times to infection of kidney dialysis patients. In a study Wyse et al.
(2011), (given in the book by ?) designed to assess the time to first exitsite infection (in months)
in patients with renal insufficiency, 43 patients utilized a surgically placed catheter (Group 1),
and 76 patients utilized a percutaneous placement of their catheter (Group 2), a total of 119 pa-
tients.
The variables represented in the data set are time to infection in months/10 denoted by t, in-
fection indicator or event (0=no, 1=yes) denoted by � and catheter placement (1=surgically,
2=percutaneously) denoted by trt. We analyse the data set using exponential model and Weibull
model.
The exponential model for this example can be specified as:

ti ⇠ E (�i)

Where each survival time follows an exponential distribution with parameter �i and i is from 1

to 119. For this example we have only one covariate, catheter placement (trt) and therefore � =

(�0,�1)
0
, where �0 denotes the intercept term and �1 denotes the coefficient for the placement

covariate (trt). Here, the latent field is

�i = exp(⌘i)

with
⌘i = �0 + trti�1

where both �0 and �1 are assign the following priors distributions

�0 ⇠ N(0, 0.001)

�1 ⇠ N(0, 0.001)

There is no hyperparameter used in this model.

The Weibull model for this example can be specified as:

ti ⇠ Weibull(↵,�i)

Here also , the latent field is
�i = exp(⌘i)

1

Exponential and Weibull Models

We consider the data of times to infection of kidney dialysis patients. In a study Wyse et al.
(2011), (given in the book by ?) designed to assess the time to first exitsite infection (in months)
in patients with renal insufficiency, 43 patients utilized a surgically placed catheter (Group 1),
and 76 patients utilized a percutaneous placement of their catheter (Group 2), a total of 119 pa-
tients.
The variables represented in the data set are time to infection in months/10 denoted by t, in-
fection indicator or event (0=no, 1=yes) denoted by � and catheter placement (1=surgically,
2=percutaneously) denoted by trt. We analyse the data set using exponential model and Weibull
model.
The exponential model for this example can be specified as:

ti ⇠ E (�i)

Where each survival time follows an exponential distribution with parameter �i and i is from 1

to 119. For this example we have only one covariate, catheter placement (trt) and therefore � =

(�0,�1)
0
, where �0 denotes the intercept term and �1 denotes the coefficient for the placement

covariate (trt). Here, the latent field is

�i = exp(⌘i)

with
⌘i = �0 + trti�1

where both �0 and �1 are assign the following priors distributions

�0 ⇠ N(0, 0.001)

�1 ⇠ N(0, 0.001)

There is no hyperparameter used in this model.

The Weibull model for this example can be specified as:

ti ⇠ Weibull(↵,�i)

Here also , the latent field is
�i = exp(⌘i)

1

Exponential and Weibull Models

We consider the data of times to infection of kidney dialysis patients. In a study Wyse et al.
(2011), (given in the book by ?) designed to assess the time to first exitsite infection (in months)
in patients with renal insufficiency, 43 patients utilized a surgically placed catheter (Group 1),
and 76 patients utilized a percutaneous placement of their catheter (Group 2), a total of 119 pa-
tients.
The variables represented in the data set are time to infection in months/10 denoted by t, in-
fection indicator or event (0=no, 1=yes) denoted by � and catheter placement (1=surgically,
2=percutaneously) denoted by trt. We analyse the data set using exponential model and Weibull
model.
The exponential model for this example can be specified as:

ti ⇠ E (�i)

Where each survival time follows an exponential distribution with parameter �i and i is from 1

to 119. For this example we have only one covariate, catheter placement (trt) and therefore � =

(�0,�1)
0
, where �0 denotes the intercept term and �1 denotes the coefficient for the placement

covariate (trt). Here, the latent field is

�i = exp(⌘i)

with
⌘i = �0 + trti�1

where both �0 and �1 are assign the following priors distributions

�0 ⇠ N(0, 0.001)

�1 ⇠ N(0, 0.001)

There is no hyperparameter used in this model.

The Weibull model for this example can be specified as:

ti ⇠ Weibull(↵,�i)

Here also , the latent field is
�i = exp(⌘i)

1

Exponential and Weibull Models

We consider the data of times to infection of kidney dialysis patients. In a study Wyse et al.
(2011), (given in the book by ?) designed to assess the time to first exitsite infection (in months)
in patients with renal insufficiency, 43 patients utilized a surgically placed catheter (Group 1),
and 76 patients utilized a percutaneous placement of their catheter (Group 2), a total of 119 pa-
tients.
The variables represented in the data set are time to infection in months/10 denoted by t, in-
fection indicator or event (0=no, 1=yes) denoted by � and catheter placement (1=surgically,
2=percutaneously) denoted by trt. We analyse the data set using exponential model and Weibull
model.
The exponential model for this example can be specified as:

ti ⇠ E (�i)

Where each survival time follows an exponential distribution with parameter �i and i is from 1

to 119. For this example we have only one covariate, catheter placement (trt) and therefore � =

(�0,�1)
0
, where �0 denotes the intercept term and �1 denotes the coefficient for the placement

covariate (trt). Here, the latent field is

�i = exp(⌘i)

with
⌘i = �0 + trti�1

where both �0 and �1 are assign the following priors distributions

�0 ⇠ N(0, 0.001)

�1 ⇠ N(0, 0.001)

There is no hyperparameter used in this model.

The Weibull model for this example can be specified as:

ti ⇠ Weibull(↵,�i)

Here also , the latent field is
�i = exp(⌘i)

1

SAS model

PROC MCMC data=survival.data outpost=postout thin=10 nbi=10000 nmc=30000
seed=12541
 monitor=(beta0 beta1);

 ods output PostSummaries=PostSummaries;
 ods output PostIntervals=PostIntervals;

 /*** initial values ***/
 parms (beta0 beta1) 0;

 /*** priors ***/
 prior beta: ~ normal(0, var = 1000);

 /*** model ***/
 eta= beta0+beta1*placement;
 /* if the distribution parameter is the regression, the log-likelihood for right censored
 data is as follows (log survival function + logpdf if event is observed) */
 llike=event*(eta)-time*exp(eta);
 model general(llike);
run;

SAS model

n  Using the ‘general’ statement, proc MCMC will take care to sum
the posterior log-density of each observation to compute the log-
posterior

SAS summary

Stan model with prior as in SAS

library(rstan)
stan_code <- '
 data {
 int<lower=0> N;
 real time[N];
 real event[N];
 real placement[N];
}
parameters {
 real beta[2];
}
model {
 real eta[N];
 beta ~ normal(0, 1000);
 for(i in 1:N) {
 eta[i]<- beta[1]+ beta[2]*placement[i];
 lp__ <- lp__ + event[i]*(eta[i])-time[i]*exp(eta[i]);
 }
}
‘
source("Bayes 2013_Survival Data.R »)

fit <- stan(model_code = stan_code, data = Data, iter = 1000, chains = 1)
fit2 <- stan(fit = fit, data = Data, iter = 15000, chains = 2,thin=10,warmup=5000)

Here, lp__ is a reserved word that makes
clear that the model block evaluate the
log posterior as a sum of observations posterior
densities

 mean se_mean sd 25% 50% 75% n_eff Rhat!

beta[1] -0.66 0.01 0.61 -1.06 -0.66 -0.25 2267 1!

beta[2] -0.55 0.01 0.41 -0.81 -0.54 -0.28 2265 1!

!

> HPDinterval(as.mcmc(as.matrix(fit2)))!

 ! lower upper!

beta[1] -1.822407 0.5413661!

beta[2] -1.316363 0.2675095!

Stan model with uniform prior

library(rstan)
stan_code <- '
 data {
 int<lower=0> N;
 real time[N];
 real event[N];
 real placement[N];
}
parameters {
 real beta[2];
}
model {
 real eta[N];
 #beta ~ normal(0, 1000);
 for(i in 1:N) {
 eta[i]<- beta[1]+ beta[2]*placement[i];
 lp__ <- lp__ + event[i]*(eta[i])-time[i]*exp(eta[i]);
 }
}
‘
source("Bayes 2013_Survival Data.R »)

fit <- stan(model_code = stan_code, data = Data, iter = 1000, chains = 1)
fit2 <- stan(fit = fit, data = Data, iter = 15000, chains = 2,thin=10,warmup=5000)

 mean se_mean sd 25% 50% 75% n_eff Rhat!

beta[1] -0.66 0.01 0.59 -1.05 -0.65 -0.27 1681 1!

beta[2] -0.55 0.01 0.39 -0.81 -0.55 -0.29 1714 1!

!

> HPDinterval(as.mcmc(as.matrix(fit2)))!

 ! lower upper!

beta[1] -1.758074 0.5402209!

beta[2] -1.387087 0.1610000!

(Other) model check

INLA model

n  The model is surprisingly easy to write in INLA
source('Bayes 2013_Survival Data.R’)
library(INLA)
inla.surv() automatically handles right-censored data
’time’is the follow up time
formula = inla.surv(time, event) ~ placement

#The prior assumed for intercept and regression coefficient are same as by default
#Exponential model is given by
model=inla(formula,family="exponential", data= data, verbose=TRUE)

summary(model)

m = model$marginals.fixed$placement
inla.hpdmarginal(0.95, m)

Fixed effects:!
 mean sd 0.025quant 0.5quant 0.975quant kld!
(Intercept) -0.6243 0.5979 -1.8395 -0.610 0.5097 4e-04!
placement -0.5335 0.3969 -1.3253 -0.529 0.2323 0e+00!
!
!
!
 low high!
level:0.95 -1.317485 0.2390768! (similar to Stan and SAS results with Normal prior)

Conclusion

n  Parameter correlations give a hard time to the samplers
-  We don’t succeed to overcome this, using proc MCMC

Centering regressor certainly helps but this seems not sufficient

-  Stan is readily built to take a special care of the correlations in using the
gradient to define its proposals

n  A plurality of tools exist each with specificities

n  Stan is very flexible and powerful, yet it requires more coding and
complex installation
-  ...while your IT departement takes care of SAS and so virtually

everybody can play with proc MCMC

Conclusion

n  All samplers (proc MCMC, Stan, INLA) can handle non-trivial
likelihood by letting the user simply defines (nearly) any log
posterior he wants
-  The special case of differential equations ?

n  Thank you !

